State vs. Path Functions

- **State**:
 - \(U, H, p, V, T \)
 - Independent of preparation

- **Path**:
 - \(\Delta U = U_f - U_i \)
 - Independent of path

- \(dq, dw \) are inexact differentials
 - \(\frac{dU}{dT} = C_p \cdot \) isothermal
 - \(\frac{dH}{dT} = C_p \cdot \) isenthalpic

Changes in Internal Energy

- \(dU = \frac{dH}{dT} \cdot dV + C_p \cdot dT \)

Internal Pressure

- \(\pi_T = \frac{dU}{dV} \cdot T \)
 - Measure of cohesive forces
 - \(\pi_T = 0 \) for perfect gas

Joule Apparatus

- Expanded gas into a vacuum

Joule-Thomson Effect

- \(\mu, \mu_T \) determine the signs of \(\mu \) and \(\mu_T \)

Apparatus #1

- \(\mu = \frac{d(TdP)}{dV} \)
 - Linde refrigerator

Apparatus #2

- \(\mu_T = \frac{d(HdP)}{dV} \)
 - Isothermal

Examples of Using \(\kappa_T \)

- JT coefficient

- \(\kappa_T = \frac{1}{\mu} \left(\frac{dV}{dP} \right)_T \)

- \(\frac{dU}{dT} = \kappa_T \cdot \) isothermal

- \(\frac{dH}{dT} = \kappa_T \cdot \) isenthalpic

Changes in \(U \), Const. \(p \)

- \(\alpha = \frac{1}{\mu} \left(\frac{dV}{dP} \right)_T \)

New: Expansion Coefficient, \(\alpha \)

- Large \(\alpha \), big responses to change in \(T \)

Perfect Gas, \(\pi_T = 0 \)

- \(C_p - C_v = \frac{dH}{dT} - \frac{dU}{dT} \)

Relation between \(C_p \) and \(C_v \)

- Prove that (know this proof):

State vs. Path

- Exact differentials: \(\Delta U = U_f - U_i \)
- Independent of path

- \(dU \) is an exact differential
- \(q, w \) inexact differentials
- Inexact differentials are dependent on path

- \(dU = \frac{dH}{dT} \cdot dV + C_p \cdot dT \)

- \(\frac{dU}{dT} = C_p \cdot \) isothermal

Apparatus #1

- \(\mu = \frac{d(TdP)}{dV} \)

Apparatus #2

- \(\mu_T = \frac{d(HdP)}{dV} \)

Examples of Using \(\kappa_T \)

- JT coefficient

- \(\frac{dU}{dT} = \kappa_T \cdot \) isothermal

- \(\frac{dH}{dT} = \kappa_T \cdot \) isenthalpic

Changes in \(H \), Const. \(V \)

- \(dH = \frac{dU}{dT} \cdot dV + C_p \cdot dT \)

Total Differential Equation (TDE):