Assigned problems for Lecture 1 are listed below (corrections and updates are highlighted in yellow). The questions occur in the following editions of "Physical Chemistry" by P.W. Atkins:

10th edition	9th edition	8th edition

Question 1.01

n/a	n/a	n/a

These are problems from the 7th edition (1.4) that was discontinued from the 8th edition onwards.

- (a) A sample of air occupies 1.0 L at 25 °C and 1.00 atm. What pressure is needed to compress it to 100 cm³ at this temperature?
- (b) A sample of carbon dioxide gas occupies 2.0 dm³ at 20 °C and 104 kPa. What pressure is needed to compress it to 250 cm³ at this temperature?

Question 1.02

1A.2(a) A perfect gas undergoes isothermal compression, which reduces its volume by 2.20 dm³. The final pressure and volume of the gas are 5.04 bar and 4.65 dm³, respectively. Calculate the original pressure of the gas in (i) bar, (ii) atm.

1A.2(b) A perfect gas undergoes isothermal compression, which reduces its volume by 1.80 dm³. The final pressure and volume of the gas are 1.97 bar and 2.14 dm³, respectively. Calculate the original pressure of the gas in (i) bar, (ii) torr.

Question 1.03

n/a	n/a	n/a

These are problems from the 7th edition (1.7) that was discontinued from the 8th edition onwards.

- (a) To what temperature must a 1.0 L sample of a perfect gas be cooled from 25 °C in order to reduce its volume to 100 cm³?
- (b) To what temperature must a sample of a perfect gas of volume 500 mL be cooled from 35 °C in order to reduce its volume to 150 cm³?

Question 1.04

1A.4	1.4	1.4

1A.4(a) A sample of 255 mg of neon occupies 3.00 dm³ at 122 K. Use the perfect gas law to calculate the pressure of the gas.

1A.4(b) A homeowner uses 4.00×10^3 m³ of natural gas in a year to heat a home. Assume that natural gas is all methane, CH₄, and that methane is a perfect gas for the conditions of this problem, which are 1.00 atm and 20 °C. What is the mass of gas used?

Question 1.05

1A.7	1.7	1.7

1A.7(a) In an attempt to determine an accurate value of the gas constant, R, a student heated a container of volume 20.000 dm³ filled with 0.251 32 g of helium gas to 500 °C and measured the pressure as 206.402 cm of water in a manometer at 25 °C. Calculate the value of R from these data. (The density of water at 25 °C is 0.997 07 g cm⁻³; the construction of a manometer is described in Exercise 1.6(a).)

1A.7(b) The following data have been obtained for oxygen gas at 273.15 K. The density of oxygen at 273.15 K is 0.001344 g cm⁻³. Calculate the best value of the gas constant R from them and the best value of the molar mass of O_2 .

p/atm	0.750 000	0.500 000	0.250 000
$V_{\rm m}/({\rm dm^3mol^{-1}})$	29.9649	44.8090	89.6384

Clarifications:

Question 1.05

1A.7	1.7	1.7

The molar volume is given incorrectly in the first column, it should be 29.8649 not 29.9649. I did the problems from the 6th edition (where this is correct) and for some reason, this mistake has not been noticed in the 7th to 10th editions.

A-list solutions for 1.01 and 1.03

E1.4(a) Boyle's law [1.6] provides the basis for the solution.

Since
$$pV = \text{constant}$$
, $p_f V_f = p_i V_i$
Solving for p_f , $p_f = \frac{V_i}{V_f} \times p_i$
 $V_i = 1.0 \, \text{L} = 10\overline{00} \, \text{cm}^3$, $V_f = 100 \, \text{cm}^3$, $p_i = 1.00 \, \text{atm}$
 $p_f = \frac{10\overline{00} \, \text{cm}^3}{100 \, \text{cm}^3} \times 1.00 \, \text{atm} = 10 \times 1.00 \, \text{atm} = \boxed{10 \, \text{atm}}$

E1.7(a) Charles's law in the form
$$V = \text{constant} \times T$$
 [1.9] may be rewritten as $\frac{V}{T} = \text{constant}$ or $\frac{V_{\rm f}}{T_{\rm f}} = \frac{V_{\rm i}}{T_{\rm i}}$ Solving for $T_{\rm f}$, $T_{\rm f} = \frac{V_{\rm f}}{V_{\rm i}} \times T_{\rm i}$, $V_{\rm i} = 1.0 \, \text{L}$, $V_{\rm f} = 100 \, \text{cm}^3$, $T_{\rm i} = 298 \, \text{K}$
$$T_{\rm f} = \left(\frac{100 \, \text{cm}^3}{1000 \, \text{cm}^3}\right) \times (298 \, \text{K}) = \boxed{30 \, \text{K}}$$

B-list solutions for 1.01 and 1.03

E1.4(b) Boyle's law applies.

$$pV = \text{constant}$$
 so $p_f V_f = p_i V_i$

$$p_f = \frac{p_i V_i}{V_f} = \frac{(104 \text{ kPa}) \times (2000 \text{ cm}^3)}{(250 \text{ cm}^3)} = \boxed{832 \text{ kPa}}$$

E1.7(b) Charles's law applies.

$$V \propto T$$
 so $\frac{V_{\rm i}}{T_{\rm i}} = \frac{V_{\rm f}}{T_{\rm f}}$
and $T_{\rm f} = \frac{V_{\rm f}T_{\rm i}}{V_{\rm i}} = \frac{(150\,{\rm cm}^3)\times(35+273)\,{\rm K}}{500\,{\rm cm}^3} = \boxed{92.4\,{\rm K}}$